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ABSTRACT examples where only a small number of samples is available

Manv detection algorithms in hvpersoectral image anal Sisforeach covariance matrix that needs to be estimated. Fo mit
y 9 yperspect 9 ay igate the effect of undersampling, various kinds of rega&ar
from well-characterized gaseous and solid targets to eelib

) . éion have been proposed [6, 7, 8]. We will consider two re-

ately uncharacterized anomalies and anomalous changes, de . . :
end on accurately estimating the covariance matrix of th(ca:ently developed regularizing schemes for covarianceirmatr
P Y g estimation based on the sparse matrix transform (SMT) [9].

t_)ackground. In practi(_:e, thg backgrounq covar.ia}nce_ Is ©S In Ref. [9], the effectiveness of the SMT estimator was

grsrlﬁ;eaczef?amn IZ irgﬁ)gez Ilgs;hsf |$?3;}O?‘ndol\lrvne;)rre0|5|on n thISdemonstrated in terms of eigenvalues and Kullback-Leibler
In thi r we describe th f m. trix transfor distances between Gaussian distributions based on true and

S Paper, we describe he sparse ma ansto rT<1;1pproximate covariance matrices. In this paper, we investi

(SMT) and inve s_tlgate its utility for estimating the cowice gate the performance of the adaptive matched filter, which

matrix from a imited number of samples. The SMT is formeddepends on a covariance matrix estimate, when different reg

by a product of pairwise coordinate (Givens) rotations. EX'ularizers are used. This work extends previous work by sther

periments on hyperspectral data_ show that the gsumate al?fvestigating different approaches for regularizing tlia:
curately reproduces even small eigenvalues and eigemsecto.; :
; . . . tive matched filter [4, 10, 11].
In particular, we find that using the SMT to estimate the co-
variance matrix used in the adaptive matched filter leads to

consistently higher signal-to-clutter ratios. 2. MAXIMUM LIKELIHOOD ESTIMATION

Index Terms— covariance matrix, hyperspectral im- Given ap-dimensional Gaussian distribution with zero mean
agery, matched filter, signal detection, sparse matrixstran and covariance matrixz € RP*?, the likelihood of ob-

form serving m samples, organized into a data matik =
[x1X2 ... X;n] € RPX™ s given by
1. INTRODUCTION |R|7m/2

L(R; X) = exp f%trace(XTR*X) A

. o o (2m)mp/2
The covariance matrix is the cornerstone of multivariate st
tistical analysis. From radar [1] and remote sensing [2] tdf the covariance is decomposed as the prodeict EAET
high finance [3], algorithms for the detection and analy$is owhere E is the orthogonal eigenvector matrix andis the
signals require the estimation of a covariance matrix, rofte diagonal matrix of eigenvalues, then one can jointly mazani
as a way to characterize the background clutter. For applicahe likelihood with respect td& and A, which results in the
tions — such as hyperspectral imagery — where the covariangaaximum likelihood (ML) estimates [9]
matrix is large, the estimation of that matrix from a limited - . . T
number of samples is especially challenging. E arg MiNgeq {\dlag(E SE) |} @
The sample covariance is the most natural estimator, but A = diag ( ETSE) ; (3)
particularly when the number of samples(e.g.,number of
pixels) is not much larger than the dimensjo(e.g.,number  where S = (xx”) = LX X7 is the sample covariance,
of spectral channels), this is not necessarily the beshesti.  and() is the set of allowed orthogonal transforms. THer=
Sliding window [4] and segmentation methods [5] are just tWog A £7 is the ML estimate of the covariance.
“This work was supported by NSF CCR-0431024. Note_that ifS has full rank _ancﬂ is the set of a_ll ortht_)go_-
tThis work was supported by the Laboratory Directed ReseanchDe- ~ Nal matrices, then the ML estimate of the covariance is given
velopment (LDRD) program at Los Alamos National Laboratory. by the sample covarianc& = S.




2.1. Sparse Matrix Transform (SMT) 4. NUMERICAL EXPERIMENTS

The Sparse Matrix Transform (SMT) provides as way to redrhe analysis in this paper is based on two hyperspectral

ularize the estimate of the (_:ovariance matr@x by restrigtive datasets: one is a 224-channel AVIRIS image of the Florida
seif? to a class of sparse elge_nvector matriées . coastline that was used in Ref. [12] and one is a 191-channel
. The mos.t sparse nonirivial orthogonal trgnsform IS thqmage of the Washington DC mall that was used in Ref. [2].
leer_ls rotation which gorregponds toa _rc_)tat|oq "?y an an-r.r the Florida image, we used all 75,000 of the pixels in the
gle ¢in the plapg of the and;j axes; specifically, it is given image to estimate the “true” covariance; for the Washington
by B = I+ ©(i, j,0) where data, we limited ourselves to the 1224 pixels that were kbel
cos() —1 ffm=n=iorm=n=j & “water.” We have performed cqm_parisons with a number
o sin(6) if m — i andn = j of other data sets, and observed similar results.
O(i, 4, 0)mn = _sin()  ifm=jandn—i We compare SMT and SMT-S to other regularization
schemes. Shrinkage estimators are a widely used class of es-
)  timators which regularize the covariance matrix by shufgki
Let £, denote a Givens rotation, and note that a producF toward some target structures. Shrinkage estimatorsrgen
of orthogonal rotation&y, Ey_1 - - - B is still orthogonal. Let  ally have the formiz = aD + (1 — a)S where D is some
Qx be the set of orthogonal matrices that can be expressdtPsitive definite matrix. Two popular choices of are the
as a product ofK” Givens rotations. The SMT covariance Scaled identity matrix, trace)/p - I (called “Shrinkage-trl”
estimate is then given by Eq. (2) with = Qx and Eq. (3). in the plots), and the diagonal entries ®f diag(.S) (called
(Actually, the effectiveq is more restrictive than this, since “Shrinkage-D” in the plots), and the corresponding shriea
we do not optimize oveall possible products ok rotations, ~€stimators are used for comparison in this paper. SMT-S is

but instead greedily choose Givens rotations one at a time.) the shrinkage estimator with being the SMT estimate.
The parameteK required by SMT can be efficiently de-

termined by a simple cross-validation procedure. Spedifica
we partition the samples into three subsets, and chéose

One practical use for a covariance estimate is the deteofion Maximize the average likelihood of the left-out subset give
signals using a matched filter. This detector depends on thtge estimated covariance using the other two subsets. This

covariance matrix of the background data, and the better tHg/0SS-validation requires little additional computatisince
covariance is estimated, the more effective the detector. ~ €VerY Ei IS @ sparse operator. As the number of samples

Afilter q € R? is a vector of coefficients which is applied 9rOWS €-€.,m =~ 10p), the optimalk for SMT can be very

to an observatiox to give a scalar valug”x which is large  12r9€- In experiments, we considergdup top(p — 1) /2.

whenx contains signat and is small otherwise. The signal- ~ For SMT-S, we found that we could more agressively
to-clutter ratio for a filterq is given by limit the number of Givens rotations (we us&d< 10p) and

still obtain effective performance by choosing the shripka
SCR— (@'t)>  (q7t)?  (q"t)? coefficienta to maximize the cross-validated likelihood.
 {((aTx)?) o (xxT)q qTRq ©) In Fig. 1, the performance of different covariance estima-
o o tors is compared using the SCRR statistic. In Fig. 1(a,p,d,e
The matched filteris the vector that optimizes the SCR, andye see that SMT and the SMT-S algorithms outperformed the
itis given, up to a constant multiplier, by = R™'t. UsSing  qther regularization schemes over a range of values,ofith

0 otherwise.

3. MATCHED FILTER CRITERION

thisq in Eq. (5), we get the optimal SCR: the most dramatic improvement at the smallest sample sizes.
(t7 R-1t)2 This behavior wasot seen in Fig. 1(c,f), however, and we
SCR, = ————— =tTR1t. 6) discuss this in the following section.
R= TR TRR Tt © 9

If we approximate the matched filter using an approximate . : .
covariance matrid, theng — Rt gives 4.1. Structure in the covariance matrix

Itis widely appreciated that real hyperspectral data isulbt

SCR= M (7)  modeled by a multivariate Gaussian distribution [13, 14]t B
tTR-1RR-1t in addition to this structuréeyondthe Gaussian, there also
and the SCRR is the ratio appears to be structuvethin the covariance matrix.
A We hypothesize that this structure is exploited by SMT
SCR (t"R™1t)? and that that explains how SMT can outperform the other

® regularizers. We tested this hypothesis by randomly nogati

R the covariance matrices. A random orthogonal mafitob-
If R = R, then SCRR= 1, but in general SCRK 1. tained from a QR decomposition of a matrix whose elements

SCR,  (tTR-1RR-1t)(t’R-1t)’
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Fig. 1. Average of SCRR as a function of sample size for (a,b,c)iddomage and (d,e,f) Washington image. In all cases, the
target signals are randomly generated from a Gaussianbdittm, and the error bars are based on runs with 30 trialgd) (
Gaussian samples are generated from the “true” covariarateaes for these two images. (b,e) Non-Gaussian samptes ar
drawn at random with replacement from the image data itéelf) Gaussian samples generated from randomly rotateaizov
ance matrices. All plots are based on 30 trials, and eadhusid a different rotation (for the randomly rotated coandes)
and a different target.

were independently chosen from a Gaussian distributios) waalgorithms which exploit this data do not require non-nagat
used to rotate the matrices: that 2, = QRQ". Fig. 1(c,f)  values; but it does point to unexploited structure in thedat
shows the performance of different covariance estimatprs a  This structure can be illustrated by considering the co-
plied to randomly rotated covariance matrices. Indeedseéhe variance matrixR from a hyperspectral image. We can ex-
panels show that the rotationally invariant Shrinkagesgrl press this matrix in terms of a product of eigenvectors and
the estimator with the best performance. eigenvaluesR = EAET, and then observe an image of the
The performance of the sample covariance was similar fopigenvector matrixz. Fig. 2 illustrates such images, based
all of these cases. This is consistent with the theoretézallt, ~©on the Florida data and on the Washington data. We see
due to Reeckt al. [1], that form > p, the expected value that the eigenvector images, in Fig. 2(b,f) are sparse, par-
of SCRR is given byl — p/m. (Form < p, the sample ticularly compared to their randomly rotated counterpants
covariance is singular and the matched filter is undefined.) Fig. 2(c,9). The histograms in Fig. 2(d,h), with their sharp

One appeal of algorithms based on the covariance matrigzeaks at zero, further emphasize this sparsity.
is that they are often rotationally invariant. If we rotatero
datax via some linear transfort = Lx, then the analysis 5. REFERENCES
on x uses a different covariance matdk = LRL", but ro-
tationally invariant algorithms will detect signal at thanse
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Fig. 2. Non-rotationally-invariant structure in the covarianwetrix of real hyperspectral data is evident in the image of
eigenvectors for (a,b,c,d) Florida data and for (e,f,g,l@stihgton data. In (a,e) the covariance matrix is shown laither
values ofR;; plotted darker; in (b,f) the matrixs of eigenvectors ofR is shown with larger values of the absolute value
|E;;| shown darker; in (c,g) the eigenvectors are shown for a nanyleotated covariance matrix; and in (d,h) a histogram of
eigenvector values is shown for both the original and theloanly rotated covariance matrix.
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